Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm

نویسندگان

  • G. S. Bust
  • T. W. Garner
  • T. L. Gaussiran
چکیده

[1] With the advent of the Global Positioning System (GPS) measurements (from both ground-based and satellite-based receivers), the number of available ionospheric measurements has dramatically increased. Total electron content (TEC) measurements from GPS instruments augment observations from more traditional ionospheric instruments like ionospheric sounders and Langmuir probes. This volume of data creates both an opportunity and a need for the observations to be collected into coherent synoptic scale maps. This paper describes the Ionospheric Data Assimilation Three-Dimensional (IDA3D), an ionospheric objective analysis algorithm. IDA3D uses a three-dimensional variational data assimilation technique (3DVAR), similar to those used in meteorology. IDA3D incorporates available data, the associated data error covariances, a reasonable background specification, and the expected background error covariance into a coherent specification on a global grid. It is capable of incorporating most electron density related measurements including GPS-TEC measurements, low-Earth-orbiting ‘‘beacon’’ TEC, and electron density measurements from radars and satellites. At present, the background specification is based upon empirical ionospheric models, but IDA3D is capable of using any global ionospheric specification as a background. In its basic form, IDA3D produces a spatial analysis of the electron density distribution at a specified time. A time series of these specifications can be created using past specifications to determine the background for the current analysis. IDA3D specifications are able to reproduce dynamic features of electron density, including the movement of the auroral boundary and the strength of the trough region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporation of UV Radiances Into the USU GAIM Models

The primary USU data assimilation model is the Full Physics Kalman Filter (FPKF) model. It provides specifications and forecasts on a spatial grid that can be global, regional, or local. It uses a physicsbased ionosphere-plasmasphere-polar wind model and a Kalman filter as a basis for assimilating a diverse set of real-time (or archived) measurements, and it is capable of assimilating in situ a...

متن کامل

A performance evaluation of the operational Jet Propulsion Laboratory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC GAIM)

[1] The Jet Propulsion Laboratory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC GAIM) uses two data assimilation techniques to optimally combine ionospheric measurements with the physics model: a sparse, traditional Kalman filter to estimate the three-dimensional density state, and a four-dimensional variational approach (4DVAR) to estimate ionospheric drivers...

متن کامل

Tomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets

Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...

متن کامل

1 COSMIC GPS Ionospheric Sensing and Space Weather

As our civilization becomes more dependent on space based technologies, we become more vulnerable to conditions in space weather. Accurate space weather specification and forecasting require proper modeling which account for the coupling between the sun, the magnetosphere, the thermosphere, the ionosphere and the mesosphere. In spite of the tremendous advances that have been made in understandi...

متن کامل

Nonlinear Estimation to Assimilate GPS TEC Data into a Regional Ionosphere Model

A new method of is being developed to estimate the ionosphere’s 3-dimensional electron density distribution based on GPS slant TEC data. The goal of this effort is to develop a generalized parametric ionospheric model that is amenable to data assimilation using powerful nonlinear least-squares batch filtering techniques and related techniques. In addition to assimilating GPS TEC data, this meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004